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We use the molecular dynamics technique to study the enhancement of the self-diffusive transport of
particles in a two-dimensional Rayleigh-Bénard convective fluid. The effective self-diffusion coefficient
D* can be computed from the simulations performed with 5 to 10000 particles. The enhancement of
diffusion with respect to molecular self-diffusion is shown to scale as Pe!’%, where Pe is the Péclet num-
ber, which characterizes the ratio of the diffusive to the advective time. This behavior is in agreement
with previous theoretical and experimental results. The simulation technique, however, permits us to ex-
plore domains of intermediate Péclet numbers around 100, where experiments are knowledgeably

difficult to perform.

PACS number(s): 05.60.+w, 05.70.Ln, 44.25.+f, 47.27.Te

I. INTRODUCTION

The transport of matter in fluid systems is a process
that finds important applications in various fields of sci-
ence and engineering, including, for example, the disper-
sion of pollutants. The term passive that is sometimes
added to it means that the velocity field of the fluid is not
affected by the presence of the species that is transported:
the tracer needs to be neutrally buoyant. The interplay
between the small-scale random walk of the tracer parti-
cles, giving rise to the molecular diffusion processes, and
the large-scale hydrodynamical flow field of the fluid is by
no means trivial, as was shown for the first time by Tay-
lor [1] in 1954.

Passive mass transport is of much interest in many
complex situations, such as, for example, a fluid subject
to turbulent motion or in flows in which spatiotemporal
patterns have set in. These fluid states are themselves
difficult to describe so that the modelization of the mass
transport cannot be fully understood from the analysis of
the basic starting equations: the Navier-Stokes equations
for the fluid flow and the diffusion equation (in a fluid at
rest) for the tracer. Phenomenological treatments, how-
ever, permit one to obtain most of the qualitative
behavior of the scalar transport [2].

More recently, a lot of attention has been devoted to
the understanding of passive mass transport when the
fluid is undergoing a steady convective flow in a one-
dimensional geometry. This is one of the simplest exam-
ples, where the interactions between diffusion and a
steady flow structure can be examined in detail: indeed,
an analytical form for the fluid flow field can be obtained
from a perturbation expansion [3]. The nondimensional
parameter characterizing the relative importance of the
flow field mass transport and the molecular diffusion is
given by the Péclet number Pe. This number is defined as
the ratio ul /D m, with u a characteristic flow field veloci-
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ty, I the typical length (in Rayleigh-Bénard convection
experiments, / is the fluid layer height), and D the molec-
ular diffusion coefficient. It is, as a matter of fact, the ra-
tio of the diffusion-over-a-roll time over the inverse shear
rate in the flow field.

Sagues and Horsthemke [4] have derived a diffusion
equation for the tracer in the vicinity of the convective
instability threshold, with an effective diffusion coefficient
D*. This result was later extended to the large Péclet
number domain, so that the scaling of D* with Pe has
been derived in the whole Pe range [5], going from a Pe?
behavior in the low Pe regime to a Pe!’? behavior at high
Pe. In the limit of large Pe, Shraiman [6] and, indepen-
dently, Rosenbluth ez al. [7] have also found an enhance-
ment of D proportional to Pe!/2.

At large Pe, a crossover between two behaviors was
predicted by Young, Pumir, and Pomeau (8], depending
on the time scale investigated: for times smaller than the
diffusion-over-a-roll time, no linear increase of the mean
square displacement in time was found; rather, the num-
ber of convective cells invaded by the tracer was predict-
ed to increase in time like ¢!/° for rigid and ¢!/* for
stress-free boundary conditions [9,10]. For larger times,
on the other hand, the diffusion law, with the number of
invaded cells increasing like ¢ !/2, was recovered.

Experimental results have been reported by Solomon
and Gollub [11]. They have found a diffusive behavior
for impurities in a fluid layer with convective rolls in the
direction perpendicular to the roll axis. Besides, over the
range of Pe inspected—around a few hundred and
around 10®—they could confirm the square-root scaling
behavior. Anomalous diffusion predictions were also test-
ed and verified experimentally [12]. Numerous experi-
ments have been reported concerning effective diffusion
coefficients in turbulent media [13].

In this paper, we report a direct simulation by molecu-
lar dynamics (MD) of the passive diffusion in a Rayleigh-
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Bénard cell. A few years ago, it was indeed found that
the MD technique could be applied to the study of hydro-
dynamical instabilities [14]: fluid systems made of a few
thousand particles, when submitted to the same con-
straints that would lead to the Rayleigh-Bénard instabili-
ty, do indeed display the expected macroscopic behavior
like the transition to the convective mode of heat trans-
port. The solution obtained from the direct computation
of the hydrodynamical variables from the MD simulation
can quantitatively be compared to the solution obtained
from the corresponding macroscopic analysis [15]. It is
therefore tempting to use this molecular model to investi-
gate the diffusive behavior in these models and to con-
front it with the theoretical predictions.

A fluid layer heated from below in the gravity field un-
dergoes a transition to convective heat transport at a crit-
ical value of the Rayleigh number, Ra, which reads

3
a= agATI

Ra== b (1)

In Eq. (1) a is the thermal expansion coefficient, v the ki-
nematic viscosity, D, the thermal diffusivity, g the gravi-
ty acceleration, and AT the temperature difference be-
tween the top and bottom of the layer. After the instabil-
ity, the fluid develops a pattern, which, in an infinite hor-
izontal geometry, is made of parallel rolls. This is in fact
a two-dimensional structure in the plane perpendicular to
the roll axis, which can be modeled by a two-dimensional
microscopic simulation. Although the fluid layer height
that can be achieved in a molecular simulation is fairly
small, critical values of Ra (between 600 and 2000, de-
pending on the boundary conditions) can be realized by
an artificial increase of the forcing parameters g and AT.
Any further increase of Ra can only be obtained by a cor-
responding increase of the number of particles used in the
simulation.

During the last few years, several other problems aris-
ing in fluid mechanics have been examined through mi-
croscopic simulations [16,17]. Besides their fundamental
interest regarding the limit of validity of the continuum
theories, these simulations also furnish a complete
description over different time scales of the fluid system
of interest. In the present problem of diffusion in a
Rayleigh-Bénard convective flow, they permit one to ex-
plore a range of values for the Péclet number that can
hardly be reached in an experiment: between one and few
tens. They also allow access to the full range of time
scales, down from the molecular times up to the effective
diffusion times.

This paper is organized as follows. In the following
section, we present the method of molecular dynamics to
model fluid flows. Then, we present the simulations per-
formed for this study and discuss a little bit the station-
ary states obtained. The fourth section is devoted to the
analysis of the behavior of the mean square displacements
in time. Finally, along with our conclusions, we present a
few remarks about possible extensions and limitations of
this work.
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II. THE MD TECHNIQUE

As is nowadays well known, most of the thermodynam-
ic properties of a fluid can be reproduced from simple
molecular dynamics models. In particular, away from
the critical point, repulsive pair potential interactions be-
tween point particles allow one to simulate most of the
fluid properties, both at and out of equilibrium.

Equilibrium properties can be obtained from simula-
tions of systems made of a few hundred particles in
periodic geometries. Periodicity is important, since it
permits one to avoid the presence of perturbing boundary
effects. In nonequilibrium stationary states (NESS), fluid
systems respond to an external constraint by a flux of a
transported quantity; this is often incompatible with
periodic boundary conditions. Techniques have been
developed in order to avoid boundary effects in NESS,
too: the so-called Sllod (so called because of its close rela-
tionship to the Dolls tensor algorithm) and Evans-Gillan
algorithms [18,19] are examples of methods that allow
one to keep periodicity in a constrained fluid.

Here, however, we are interested in an inhomogeneous
state; after the convective instability, a cellular flow field
develops (rolls) in an external (gravity) field. This makes
the presence of boundaries unavoidable, and therefore the
simplest geometry chosen is the one displayed in Fig. 1.

For the reasons given above, in order to perform our
simulations, we have chosen an ensemble of N point par-
ticles moving on a two-dimensional surface and interact-
ing through a Weeks-Chandler-Anderson potential (see,
for instance, Ref. [18]); that is,
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for r; <2178 and zero otherwise. This corresponds to the
Lennard-Jones potential cut at its minimum and shifted
upward by its value at the corresponding distance. This
model is well known to be sufficient to reproduce
representative values of transport properties of fluids.
Besides, the absence of attractive forces in the interac-
tions leads, as in the case of hard spheres, to a solid-fluid
phase diagram. No critical effects should perturb the
evolution of the system.

The fluid particles are contained between two horizon-
tal layers, the top (y =L,) and bottom (y =0) boun-
daries, by an external potential that increases to infinity,

Ttop

T :

Tbottom

FIG. 1. Geometry of the simulation cell. The system is
periodic in the horizontal (x-axis) direction, but constrained by
two external fields in the vertical (y-axis) direction. Another
external field accelerates particles downward, while two slices
are thermalized at the top and the bottom of the fluid layer.



5566

like the inverse twelfth power of the distance, so that the
effect of this containing force is felt by the fluid particles
over a distance of the order of . There is also another
external force, g, accelerating the fluid particles down-
ward in order to mimic a gravitational force. The system
is periodic in the horizontal (x-axis) direction so that the
central cell is indefinitely repeated, as shown in Fig. 1.
The fluid is also thermalized in two slices adjacent to the
top and bottom boundaries. For reasons explained below,
the thermalization mechanism is performed through the
local Nosé-Hoover technique [20]: for the particles that
belong to these slices, the equations of motion are
modified by a coupling with a reservoir at temperature
T'op, OF Toyiom and these two horizontal slices are divided
into cells. At each time step the instantaneous number of
particles N, and the instantaneous cell velocity u, of cell
a are computed from the values of the velocities of the
particles belonging to that cell. For particles belonging
to cell , the equations of motion read

dp;
7:Fi+mg—§NHpi ) (3a)
v _ 1| K =Ko (3b)
dt ~ K, ’
(pi—mua)z
k—iga‘-'—z*m“‘— , (3¢)
3(N,— 1)
KO:_E_—kB Timposed . (3d)

&nu is the Nosé-Hoover friction constant that evolves ac-
cording to Eq. (3b), in which the 7 parameter is chosen
once and for all. For the particles that belong to the
bulk, that is, those that do not belong to any of these
boundary layer cells, their equation of motion is simply
Eq. (3a) with a vanishing Nosé-Hoover friction constant.

Other simulation parameters are fixed by the physical
problem we want to solve. For instance, the boundary
conditions (BC) that we want to simulate are stress-free.
Indeed, critical values of the Rayleigh number are lower
for these BC. The Rayleigh number that can be achieved
in a MD simulation is proportional to the number of par-
ticles; this implies that the CPU time required is propor-
tional to the square of the number of particles (at best),
or, equivalently, to the square of Ra. Therefore, in order
to keep the CPU time within reasonable limits, it is
preferable to choose BC that favor a low-Ra critical
value. This is why we do not constrain the tangential
fluid velocity at the boundary. In the x direction, we
adopt periodic BC; the minimum number of rolls re-
quired is therefore 2 so that the aspect ratio (L, /L, ) has
been set to exactly 2.

Since the fluid velocity can vary on the boundary, a lo-
cal thermalization has to be set in: the boundary layers
have been divided into cells with as few particles as possi-
ble. In every boundary cell, a different reservoir coupling
is switched on. However, there has to be a sufficient
number of particles within a boundary cell; indeed, every
time a particle enters (or leaves) one of these cells, it pro-
duces a discontinuity in the local density and the local
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fluid velocity, and therefore also in the equations of
motion. The effect of this discontinuity decreases with
the number of particles contributing to N, and to u,. We
found that around 40 particles per cell was enough to
avoid any strong perturbation; the cell size extends there-
fore over 50 in the vertical direction and 200 in the hor-
izontal direction.

As already mentioned, the fluid model we use is similar
to a fluid made of hard spheres. The thermodynamics
properties of a hard-sphere fluid are well understood [21].
For instance, the transport coefficients computed from
the Enskog equation are surprisingly in good agreement
with those computed from molecular simulations, even at
large densities [22]. We have performed a few equilibri-
um simulations in order to validate this Enskog model.
The results are listed in Table I. As in the remaining part
of this paper, all results are given in system’s units in
which o=g=1 and the mass of the particles m =48.
The self-diffusion coeflicient has been computed from the
slope of the linear increase of the mean square displace-
ment of the particles, while viscosity and thermal con-
ductivity have been obtained through their Green-Kubo
expressions [22,23]. The fluid was thermalized by a
Nosé-Hoover thermostat at k3 T =1 and the number den-
sity n =0.7, well inside the fluid region.

The choice of temperature (or mean vertical tempera-
ture in nonequilibrium) is rather arbitrary, as it is for a
hard-sphere fluid where temperature simply rescales the
time variable. The choice of (mean) density, on the con-
trary, is determined by the two following requirements:
it should be in a domain where the transport coefficients
are small and the fluid should be considered as in-
compressible (in the sense of the Oberbeck-Boussinesq
approximation).

The first requirement follows from the form of the
Rayleigh number. Replacing the coefficients of Eq. (1) by
their values for the model used (the Carnahan-Stirling
equation of state for @ and Enskog values of the viscosity
and thermal diffusitivity), and keeping in mind that
mgl=~kgzAT, Ra can be put in the form of a function of
the density and temperature times N (see Ref. [15] for
more details). N and kAT fixed, Ra is maximum for den-
sities between n =0.2 and 0.4. In order to simulate an in-
compressible fluid, on the other hand, the speed of sound
should be made as large as possible so that the largest
possible density (around 0.4) seems the most appropriate.
This leads to an estimate of Pe~ 10; other choices, com-

TABLE 1. Computed and reference values of the transport
coefficients in the model fluid. The reference value is computed
from the Enskog equation (first-order Chapmann-Enskog ex-
pression in two dimensions, see Ref. [22]).

Number density Computed Enskog
Coefficient n value value
Viscosity 7 0.7 9.33 10.63
Thermal
conductivity A 0.7 0.91 0.98
Molecular self-
diffusion D 0.4 0.09 0.055
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patible with the simulation conditions, of the density and
of the number of particles permit one to simulate fluids in
the range between Pe =~ 1 and 100.

III. SIMULATIONS

We have performed five different simulations whose pa-
rameters are listed in Table II. The first four have been
performed with 9800 particles at different Rayleigh and
Péclet numbers, and a fifth one has been made with 5000
particles in order to check any size dependence of the re-
sults. For convenience, in Table II we also list the values
of the diffusion time obtained from the values of the com-
puted equilibrium transport coefficients; the advective
time 7, has been computed from an estimate of the typi-
cal fluid velocity.

The system was first started with a uniform density and
temperature fixed to the average values we want to have:
n =0.4 and kz T =1. We integrate in time (the time step
being 0.032) and follow the evolution of the velocity, den-
sity, and temperature fields. These are computed from
both a time and space average in statistical cells: we have
40X 20 of these cells, and values recorded inside these
cells are averaged over a few thousand time steps. This
time average is done in order to eliminate the thermal
noise, which would otherwise be dominant. It is only
after this averaging procedure that a smooth velocity pat-
tern emerges: an interval of 50 000 time steps seems to be
the minimum required to generate a regular field.

Figure 2 shows the velocity field that sets in after many
transients. The stable pattern does not emerge immedi-
ately, and many intermediate states appear and disappear
before stationarity is reached. This stage takes around
500000 time steps, which is computationally costly; on a
Cray YMP Computer this took around 50000 s for the
9800-particle system. The other states were then started
with an initial condition obtained from the final
configuration of the first simulation. Transients were,
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TABLE II. Parameters of the simulations performed. N is
the number of particles for the simulation, kg T\, and kg Tporom
are the fixed temperatures of the top and bottom thermostats, /
is the fluid total layer height, Ra is the estimated Rayleigh num-
ber, and 7. and 744, respectively, are the times required for a
particle to move over a roll distance by advection and by
diffusion. Pe is the estimated Péclet number.

N kE Tbottom kB T!op / Ra Te Tdiff Pe
9 800 1.6 0.4 110.7 2635 6500 136161 21
9 800 1.65 0.35 110.7 3902 4700 136161 29
9800 1.7 0.3 110.7 3586 4300 136161 32
9 800 1.8 0.2 110.7 4684 3600 136161 38
5000 2.0 0.1 79.1 3056 2800 69520 25

however, also observed, but the time necessary to reach
stability was somewhat reduced.

In Fig. 2, it is also apparent that the fluid velocity is
not constant along the streamlines. We found two
reasons for this: First, the number density increases as
the top boundary is approached. Because of mass conser-
vation, this implies a reduced mean fluid velocity, which,
in turn, induces the vertical asymmetry of the roll.
Second, the two rolls do not have the same extent. The
roll displayed in the center of the figure has a radius that
is 20% smaller than the other roll, which is split between
the two sides of the figure. This is an important fluctua-
tion that lasts for the entire simulation time. This asym-
metry leads to an upstream mass flow (at around x =160
in Fig. 2) taking place within a narrower pipe than the
downstream flow. Therefore the upstream velocity is
somewhat larger than the downstream one. The fluctua-
tions are intrinsic in the MD system (as in a real fluid);
however, the importance of the effect is fairly large and
its reduction by further averaging, either in time or in
space, cannot be easily imagined because of a huge com-
putational cost.
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FIG. 2. Fluid velocity field after 10° time
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tt+rr+-- "] steps in the simulation performed with 9800
R particles and kzAT =1.4. The pattern has
Tttt been averaged over 700000 time steps; inter-
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FIG. 3. Profiles versus height; the values are averaged over
the horizontal direction.

Figure 3 displays the profiles of density and tempera-
ture averaged over the x direction as a function of the
height. These profiles are very similar to those obtained
in hard-sphere fluid models. The Navier-Stokes equa-
tions, completed by the equation of state, the transport
coefficients, and the boundary conditions of our model,
can be solved numerically on the computer by a finite
difference method (more details can be found in Ref.
[15]. The macroscopic results so obtained are not distin-
guishable from those of the MD computation. Even the
density variation near the upper boundary matches quan-
titatively the macroscopic profile, once a local value for
the thermodynamic parameters is fed into the Navier-
Stokes equations. It is worth mentioning that the effect
of compressibility is negligible and that the profiles look
unchanged when the Boussinesq equations are used.

IV. DIFFUSION

The mean square displacements (MSD) in the x direc-
tion are shown in Fig. 4. The computations are per-

2x10°

1.5x10*

1x10°

mean square displacement [ 6%

5000

0 8000 16000
time [ (e/ ma?)~/%]

FIG. 4. Mean square displacements in the four simulations
performed with 9800 particles: the time interval of the abscissa
corresponds to 500000 time steps, while the run length itself
was 750000 time steps. The curves are numbered by increasing
Rayleigh number.
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formed with the real displacements along the x direction
of every particle initially located in the unit cell of the
simulation. The positions of the particles are recorded
every 5000th step and the total durations of the runs were
750000 steps. The correlations are kept over 500000
time steps, and are displayed in Fig. 4.

One can distinguish three time scales corresponding to
different behaviors:

(i) The first and shortest time scale is when molecular
self-diffusion is dominant. This happens for very short
times on the scale used for the plot (# =100). The
diffusion coefficients computed from the Einstein formula

(Ax*(t))=2Dt (4)

compare well to their values computed from a periodic
equilibrium system at the mean temperature and density.

(ii) Then the MSD start increasing much more than
what is expected from molecular self-diffusion. For ¢ of
the order of 3000, there is a saturation and the rate of in-
crease diminishes somewhat. This is the intermediate
time scale when particles are accelerated by the flow field
and then, later on, most of them come back near their
original positions. This second stage is seen more clearly
in Fig. 5, where the time derivatives of the MSD are plot-
ted on the same time scale as the MSD of Fig. 4. From
Fig. 5 it is clear that the time derivatives oscillate. These
oscillations last up to ¢ =~ 5000.

(iii) Finally, on the largest time scale, the MSD tend to
become linear again, and the slope computed from the
plot can be identified with twice an effective diffusion
coefficient, D*. Note however that, the larger the time,
the more linear the increase of the MSD appears. Also,
the higher the Rayleigh number, the sooner the linear re-
gime starts.

In Fig. 6 we show a log-log plot of the MSD versus
time during the last of these three periods. The linear fit

2.5

MSD derivative

0-5 " 1 1 1 " 1 " I L J
0 4000 8000 12000 16000

time

FIG. 5. Time derivative of the mean square displacements as
a function of time. As in the previous figure, the numbers refer
to the different simulations numbered by increasing Ra.
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20000 | 4
3
2
1
a
£ 10000 [
9000
8000 |
7000 L

8000 9000 10000 20000

time

FIG. 6. Plot of the MSD against time in logarithmic scales.
The curves are numbered in the same way as in the two previ-
ous figures.

of these graphs produces an angular coefficient around 1
within 3% if it is performed with the part of the graph
between ¢t =12 000 and 16 000. Performing the fit from a
time interval between 8000 and 16000 increases the
dispersion of the angular coefficients to around 10%.
Quite clearly, the MSD reach the asymptotic regime of
enhanced diffusion. The evaluation of D* has been done
by using Eq. (4) in the time interval between 12 000 and
16000. It is to be stressed that the diffusive regime ap-
pears at relatively short times compared to 74 This is
probably the reason why the anomalous diffusion regime
predicted in Refs. [8—-10] is not found here: the range of
Pe studied here is far from the large Pe limit where the
anomalous regime is predicted.

The ratio D * /D is plotted in Fig. 7 against the estimat-
ed Péclet number. The Péclet number can be written as
the ratio of the diffusion time over the advective time
Taigg/T.- The diffusion times are listed in Table II for each
simulation performed and have been obtained as the
height to the square divided by the molecular diffusion
coefficient. The advective time, on the other hand, has
been computed from the oscillations occurring in the

6.5
6 +
2 .
*
=]
5.5
5 x
4'5 " n 1 1 — " 1 ]
20 25 3¢ 35 40

Pe

FIG. 7. Diffusion enhancement versus the Péclet number:
the dots refer to the 9800 particle simulations and the cross cor-
responds to the N =5000 simulation. The curve is the a power-
law fit on the N =9800 results.
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time derivatives of the MSD, as shown in Fig. 5; they are
also listed in Table II. Indeed, the period of oscillation
represents the average time needed for the fluid particles
to perform one roll rotation on streamlines. Another es-
timate of Pe has been done by computing the fluid veloci-
ty on the separatrix between rolls. The result of this esti-
mate is very similar to the one given in Table II and used
in Fig. 7.

We used the four points corresponding to the N =9800
simulations of Fig. 7 to make a power-law fit. The result
of the estimate reads

D*/D =1.02Pe*3! | (5)

in relatively good agreement with the theoretical predic-
tions. The square-root dependence is well reproduced in
the MD computation. The value of the prefactor (as well
as the estimated Pe), on the other hand, necessitates a
much better precision for the D* computation than the
one which is obtained in such simulations. Indeed, we
have not shown in Fig. 7 any error bars, since these are
difficult to estimate. We believe that the only way to per-
form such an estimate would be to repeat similar in-
dependent computations and to observe the dispersions of
the results, since the basic fluctuations are the very slow
changes of the velocity patterns, which may take a fairly
long time to average out.

The N =35000 results are qualitatively similar to those
of the larger system. The behavior of the MSD, their
time derivatives, and the diffusion enhancement are all
equivalent to the behavior in the N =9800 particles sys-
tem. However, the cross that appears in Fig. 7 is a little
bit away from the curve fit. Although the mean values
that are computed in this smaller system are also in quan-
titative agreement with the macroscopic description, the
effect of the fluctuations can be expected to be more im-
portant. A smaller number of particles requires a larger
time average to wipe out the effects of the thermal fluc-
tuations. Even if the time to display the phenomenon is
smaller in the N =5000 particles system, the integration
time to reach the same precision of the diffusion
coefficient might be larger.

V. CONCLUSIONS

We have succeeded in computing the diffusion
enhancement of passive mass transport in a one-
dimensional convective pattern directly from a micro-
scopic modeling. The good comparison with the theoret-
ical predictions can be viewed as either a kind of experi-
mental test of the theory (since the modeling is at a fun-
damental level) or a confirmation of the ability of MD
simulation to describe quantitatively hydrodynamic com-
plex phenomena.

The CPU time required for the computations is, of
course, quite large and may appear as the major limita-
tion to the development of the application of the MD
technique in this domain. Indeed, the improvement of
both the precision and the variety of the physics observed
depends strongly on N, the number of particles used in
the simulation, and therefore on the computational cost.

For instance, the horizontal periodic boundary condi-
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tions could be replaced by a much more extended system,
so that a larger number of hydrodynamical vortices could
be used to generate the data. Indeed, it has been seen, see
Fig. 2, that the asymmetry of the rolls in the central cell
was persisting on fairly large times. A more extended
system could realize many more rolls and therefore leads
to a much better hydrodynamical configurational aver-
age. Any increase in N will also lead to a better time
resolution.

The Rayleigh number scales like N, while Pe scales like
N172, Therefore an increase of Pe by a factor of 10, all
other things being equal, can be achieved by an increase
by a factor of 100 of the number of particles. A larger
size requires in turn an increase of the integration time
(the latter being proportional to I2/D; that is, N/D) to
observe the physical phenomenon. Therefore the total
CPU time required is multiplied by 10*. A similar argu-
ment for the Rayleigh number leads to an increase of the
CPU time by a factor 10%. Under present conditions, it
seems difficult to extend much the range of Pe or Ra by
an N increase. The change in Pe and Ra can be easier to
obtain from a change in the transport properties through
the thermodynamic conditions or through the microscop-
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ic interparticle potential model.

A natural extension of this work could be a study by
the MD technique of enhanced diffusion in various
different complex flows, such as the successive transitions
to turbulence in a thermal sheared fluids. A good exam-
ple of these flows is the Kolmogorov model [24] where
fully developed (2d) turbulence can be achieved with as
few as 500000 particles. At this moment the first insta-
bilities can indeed be simulated by MD with around
10000 particles. Further forseeable development of com-
putational power makes it reasonable to reach turbulent
states in the near future. Work in this direction is in pro-
gress and will be reported soon.
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